Role of attention in experts' working memory functions - with consecutive interpreters as example

Kognitiotiede, Helsingin yliopisto
6.11.2008
Sinikka Hiltunen

1. Expertise – what is it?
 - definition of expert
 - deliberate practise
 - attention and expertise

2. Interpreting – what is it?
 - simultaneous and consecutive interpreting – differences

3. Master thesis & scientific article: Experiments
 - Word span measures – concrete and abstract
 - Attention and foreign language expertise
 - Prose recall – concrete and abstract

4. Conclusions - questions
Levels of expertise
Chi, 2003, 22

- Novice – noviisi
- Initiater – aloittelija (passed initiation rituals)
- Apprentice – oppipoika
- Journeyman – ammattilainen, asiantuntija
- Expert – ekspertti, huippu-, eliitti-
- Master – mestari, opettaja

Who is an expert?

Ericsson ja Smith, 1991:

- expert performance – consistently superior performance on a specified set of representative tasks for a domain

- intensive dedication in one domain of expertise at least for 10 yrs
Expertise – not innate

Ericsson K.A. et al., 1993:
- IQ does not correlate with exceptional skills:
 - correlation visible only in beginning of career:
 - after 5 yrs no differences
- Talent = practising from very early age
 - Schlaug et al., 1995: absolute pitch:
 - achieved at approx. 6 years by listening and practising
- learned skill – not innate - deliberate practise

Deliberate practise

- intensive practise
 - approx. 4 hrs/day,
 - 3-5 days/week
- motivation to practise and get better
- goal
- feedback

© S. Hiltunen/19.11.2008
Deliberate practise

Experience **alone not enough**

- reorganization of knowledge
 - faster accuracy
 - learning from mistakes
 - new alternative methods
- deliberate training (coaching)
 - instructions help the weakest most
 - high tolerance for errors, mistakes, even misfortune
 - overcoming plateaus
 - unlearning may be needed
 - conscious effort to avoid automatisation (new goals)

Expertise

- **Expert only in one’s own domain**, no transfer:
 - WM, Chase & Simon (1973), chess: experts recall relevant positions, not random positions
 - BUT: Gobet et al. 2001, meta-analysis: experts better even in memorizing random positions but not statistically significant
- **Basic functions automatisized**
- Selective access to knowledge
- Metakognitive skills (self-reflection)
- Understanding and integrating information from different sources:
 - context, perception, experience etc.
Expertise

➤ Perception
 • larger units
 • profound knowledge
 • organisation of patterns, models with automatisation

➤ Analysis of current situation & anticipation of future
 • qualitative (not quantitative) problem solving
 • even tiny cues enough for solution
 • fast feedback – fast development

➤ Interruptions - no influence (Oulasvirta, 2006)

➤ Even physiological adaptation (finger lengths of musicians, athletics etc.)

Expertise and attention

➤ Little research available

➤ Direction of attention differs in experts:
 • Ericsson & Charness, 1994:
 • medical students recall details, experts global relevant information
 • Ericsson & Harris, 1990 (chess):
 • experts direct attention to board center
 • novices to board borders after 50 hrs practice
Attention and memory

Conway et al., 2005:
- **short-term memory** - maintenance
 - phonological coding – surface information
 - simple STM tasks: digit span, word span
- **working memory** – attention control
 - maintenance of stimuli & goals
 - protection from distraction, interference
 - complex WM tasks: reading span, listening span, operation span, etc.

Unsworth & Engle, 2007:
- High and low WM-spans differ in:
 1. Ability to maintain information in primary memory (WM)
 2. Ability to search information in secondary memory (LTM)
 - select relevant information
 - inhibit distractions

Cowan, 2001
Interpreting: classified by time delay

Simultaneous interpreting (SI)
- Translating and speaking while listening to source language text
 - delay 3-5 s or 3-4 words
- usu. by means of technical equipment:
 - sound isolated booths
 - incoming voice through headphones
 - outgoing voice through a microphone
 - unhindered view of speaker and audience
- working in pairs: 20 min each
- translation into mother tongue (L1)
- several languages at once (one booth per language)

Consecutive interpreting
- in two phases:
 - listening and note-taking
 - speaking
- a few sentences at a time
 - = 1-3 min
- BUT: expert interpreters – 5-10 min, up to ½ h
Interpreting: where?

Simultaneous interp.
- conferences
- congresses
- symposiums
- big scale meetings
- UN – six official languag.
- EU – 23 languages
- relaying
- bi-active: into L2
- remote interpreting

Consecutive interp.
- courts
- negotiations, meetings
- community interp.
 - in Finland mostly refugees
- conferences
 - usually 1-2 languages
- no techn. equipment needed
- BUT time consuming:
 +2/3 of the speaker's time

Interpreting: how is it possible?

- excellent knowledge in both languages:
 - automatisized search for equivalent words and phrases
- excellent general knowledge in:
 - politics, culture, sciences etc. of the countries where the languages are spoken
- thorough preparation beforehand:
 - background knowledge of subject in question
 - terminology and new words and their equivalents in both languages
Interpreting: how is it possible?

Simultaneous:
- attention divided betw. listening AND:
 - reformulation
 - speaking
 - error monitoring
 - eventual error corrections
 - monitoring overall message
- anticipation
 - conference = supertext

Consecutive:
- analysis of sentence meaning (message)
- compressing
 - chunking
- efficient reformulation
- anticipation:
 - structure in general
 - phrases, speech patterns
 - ends of sentences

Interpreting: possible problems

Simultaneous:
- fast speakers
- no materials beforehand
- no written material at all
- speaker reading written text - NO speaking freely
- extreme time pressure

Consecutive:
- partly same problems
 BUT:
 - possibility to ask questions, clarifications, draw pictures, sketches
- less time pressure
- mostly conversational style, no reading written texts
Attention and memory of consecutive interpreters

Experiments, reported in:
1. Hiltunen, 2008: Pro gradu, Helsinki University, Cognitive science
2. Scientific article: coming 2009

Subjects:
- consecutive interpreters (12-15)
 - age in average 47.5 yrs; experience 16.8 yrs
- foreign language teachers (12-15)
 - age in average 45.3 yrs; experience 16.2 yrs

Stimuli:
- Finnish concrete and abstract words (frequency controlled)
- Finnish concrete and abstract prose
Attention and memory of consecutive interpreters

Hypotheses in pro gradu:
- Consecutive interpreters are experts with
 - short-term memory functions no different from those of foreign language teachers
 - exceptional working memory functions differing from other foreign language experts
- Attention explains a great deal of interpreters’ exceptional WM functions
 - ability to maintain information in WM
 - to direct attention to relevant material
 - to inhibit any distractions

Experiments 1 & 2: Inhibition

1. Simple short-term memory span (no inhibition needed)
 - free recall: 10 words (always at beginning of session)

2. Complex working memory span:
 - 2x3 words, 2x4 words, … 2x10 words (=104 w)
 - free recall after each block, spoken
 - inhibition needed in order to prevent proactive interference (PI)
Experiment 3: Prose recall

3. Prose recall, 2 prose texts:
- **Concrete text**: short story by Sinikka Nopola
 - 186 words, presented in 10 sequences
- **Abstract text**: short research article by Raimo Raitasalo in Kelan sanomat (website)
 - 197 words presented in 11 sequences
- Word-based judgements of concreteness (scale: 0 – abstract; 10 – concrete):
 - Concrete text: 6.39 (2.23)
 - Abstract text: 4.28 (1.65) (difference: $p < .001$)

- No note-taking
- Free recall, spoken
- Exp. 2 and 3 counterbalanced between subjects

Results: Pro gradu

Concrete stimuli
Results: Simple STM span

- **Exp. 1** Simple span (no inhibition, 10 concrete words):
 - Interpreters: 5.92 (1.19)
 - Teachers: 6.13 (0.92)

- **Exp. 2** Strict memory span (best correctly recalled word block, number of words):
 - Interpreters: 5.50 (0.91)
 - Teachers: 5.37 (0.52)

- **Hypothesis correct**: No differences in simple short-term memory functions between consecutive interpreters and foreign language teachers

Results: Complex working memory span

- **Complex total span** (sum of all correctly recalled words)
 - Interpreters: 79.77 (SD 7.60)
 - Teachers: 80.40 (SD 5.87)

- **Hypotheses incorrect**: No differences between subject groups
Significance of inhibition (Attention): 10 word blocks (in A1 vs. B2 ja B3)

Inhibition is significant
- especially B3 vs. A1 (p<.05)
- **BUT:**
 - for BOTH groups

AND: Inhibition is significant only with concrete stimuli:
- stimuli & inhibition interaction, p<.05
Results: article in 2009:

Word span tests, concrete and abstract

Simple short-term memory span with concrete and abstract words

NO concreteness effect:
- Both interpreters and teachers recalled concrete and abstract words equally well

<table>
<thead>
<tr>
<th></th>
<th>Strict span (n = 12 interpreters, 13 teachers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strict concr</td>
<td>5.44</td>
</tr>
<tr>
<td>Strict abstr</td>
<td>5.33</td>
</tr>
</tbody>
</table>

© S. Hiltunen/6.11.2008
Complex working memory span with concrete and abstract words:

NO concreteness effect:
- Interpreters and teachers recalled concrete and abstract words equally well.

Complex working memory span with concrete and abstract words:

Total recall of 104 words ($n = 12$ interpreters, 13 teachers)

![Bar chart](chart.png)

Concreteness effect

- **Bourassa & Besner, 1994:**
 - *no influence of imageability with abstract material*
- **Walker & Hulme, 1999:** **concreteness effect** in serial recall:
 - with spoken and read stimuli
 - with backward recall
Conclusions & questions

- No concreteness effect possible explanations:
 1. Word spans not effective enough to measure difference??
 - Ericsson & Charness, 1994: recognition of the domain's most representative tasks and repeating these tasks in a laboratory context
 2. Both consecutive interpreters and teachers are experts in foreign languages??

Conclusions & questions

3. De Beni & Moè, 2003: use of imagery with aural presentation & use of rehearsal with written presentation ➔ better recall
4. Teachers reported using more different strategies with concrete stimuli than interpreters; as to abstract stimuli not known – so far
5. Other explanations??

© S. Hiltunen/19.11.2008
Conclusions & questions

Attention and expertise in foreign languages

1. Attention (inhibition) does play a role
 - BUT how?
 - why only with concrete stimuli??

2. Attention, abstractness, strategies and foreign language expertise seem to be intertwined
 - HOW?
 - and HOW to measure it?

Results: article in 2009:

Prose recall, concrete and abstract
Idea unit

Mills et al., 1993, 289:

- sentence or part of a sentence
 - that expresses a complete idea
 - contains an actual or implied verb
 - and is usually a phrase-size unit
- practically in Finnish: clause (lause) or shortened clause (lauseenvastike)

Prose recall with concrete and abstract texts

- Abstract text was recalled better than concrete text
 - p < .001
- Interpreters recalled BOTH texts better than teachers
 - p < .001

Prose recall
Probability of recall by groups
1 = concrete, 2 = abstract
(Y - standard deviation)
Prose recall: sequence length in concrete and abstract texts

- Abstract long sequences (with 22 to 25 words) were recalled better than concrete long sequences
 - $p < .001$

- Interpreters recalled both texts and all sequences better than teachers

- Abstract long sequences best
 - group & text interaction: $p < .005$
Prose recall, abstract: Mistakes

- Interpreters made fewer mistakes in:
 - understanding time descriptions
 - understanding causal relationships
- Only the best interpreter(s) recalled all details in:
 - important lists of definitions
 - the longest sequence of 25 words

Conclusions & questions

Prose recall: interpreters ARE BETTER than foreign language teachers
- as expected
- especially in recall of abstract texts
- But WHAT explains this?
- Vincent & Wang, 1998: constraint attunement hypothesis (CAH)
 - Weber & Brewer, 2003: experts attuned to domain relevant structure
 - But what is domain relevant for interpreters?
Conclusions & questions

- **What is the difference between abstract and concrete texts??**
 - Marschack et al., 1991:
 - causality and temporal sequences in prose recall
 - could explain the difference between the two texts
 - BUT does not explain, why interpreters were better than teachers

Litterature